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Abstract

Memory management software requires additional sophistication for the array of new hard-
ware technologies coming to market: on package addressable memory, stacked DRAM, non-
volatile high capacity DIMMs, and low-latency on-package fabric. As a complement to these
hardware improvements there are many policy features that can be applied to virtual memory
within the framework of the Linux* system calls mmap(2), mbind(2), madvise(2), mprotect(2),
and mlock(2). These policy features can support a wide range of future hardware capabilities
including bandwidth control, latency control, inter-process sharing, inter-node sharing, accel-
erator sharing, persistence, checkpointing, and encryption. The combinatorial range implied
by a platform with heterogeneous memory hardware, and many options for operating system
policies applied to that hardware is enormous, so it is intractable to have a separate custom
allocator addressing each of them. Each layer of the application software stack may have a
variety of different requirements for memory properties. Some of those properties will be shared
between clients, and some will be unique to the client. We propose software that will enable
fine-grained client control over memory properties through our User Extensible Heap Manager,
which efficiently reuses memory modified by expensive system calls and remains effective in a
highly threaded environment.

1 Introduction

The Linux operating system offers several system calls to enable user level modification of memory
policies associated with virtual address ranges. These system calls will be the principle user level
mechanism to support the new features available in future hardware. An important role of heap
management software is to avoid system calls through reuse of virtual memory mapped from the
operating system. The goal of the memkind library is to bring the control available through system
calls that enforce memory policies to the interfaces used for heap management without sacrificing
the performance that is available from other user level heap managers.

The POSIX* standard mmap(2) and munmap(2) system calls can be used to allocate and deal-
locate virtual memory. However, accessing the kernel from user space through a system call is
expensive and reduces application performance if done too frequently. The finest granularity of
allocation enabled through these is the page size, calling them acquires a global lock on the kernel
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memory subsystem, and the munmap(2) call requires knowledge of the extent of memory to be
unmapped. For all of these reasons, mmap(2) is not generally the mechanism used to acquire vir-
tual memory within a C program in the POSIX environment. Instead the ISO* C malloc(3) and
free(3) family of APIs are used. An implementation of these interfaces is defined in the libc li-
brary, and many applications use the implementation offered by their compiler. In some cases there
is a need for a specialized allocator, and there are many examples of malloc(3) implementations
in use.

Given all of the custom allocators available, we must motivate the need for yet another heap
manager. The Linux operating system offers even more system calls for memory control than are
defined in the POSIX standard. The user is generally forced to use the system calls directly, rather
than a heap manager, when precise control of memory properties is required. Some examples of
common situations where glibc’s malloc(3) is insufficient are, explicit use of the Linux huge page
functionality, explicit binding of memory to particular NUMA nodes on a system, and file backed
memory. Custom allocators are most commonly used to achieve better allocation time performance
for a particular application’s usage pattern rather than to enable particular hardware features.

A number of hardware features challenge a homogeneous memory model. Several of these
features are not at all new: the page size extension (PSE) and cc-NUMA support have been enabled
in hardware for over ten years. Some features are currently available, but not extensively used:
gigabyte pages in x86 64 and stacked DRAM. In the near future the integration of addressable
memory and a low latency network interface controller (NIC) into the processor package and the
availability of non-volatile high capacity DIMMs will add yet more hardware features to complicate
memory management.

There are a wealth of established heap management solutions available. Rather than starting
from scratch, we build on top of the implementation that best suits our needs. Our target users
are in the high performance computing (HPC) community who require efficient support of highly
threaded environments. We require a solution that offers some measure of encapsulation to enable
the isolation of memory resources with different properties. Licensing is a consideration: a BSD
or MIT style license is most acceptable to the HPC community. The opportunity to participate
in an active open source development community is quite valuable. The jemalloc library fits these
requirements very well.

The ISO C programming language standard provides a user-level interface employed for memory
management in many applications, either implicitly or explicitly. These APIs are the well known
set: malloc(3), calloc(3), realloc(3), free(3), and posix memalign(3) (posix memalign(3)

is a POSIX extension to the ISO C standard). The memkind library co-opts these APIs while
prepending memkind to the names, and extending the interface with an additional argument: the
“kind” of memory. The details of what is represented in the structure of this additional argument
will be discussed later, but the interface enables a plug-in architecture that can be extended as
hardware and policy features evolve. It is important to note that the “kind” of memory determines
both hardware selection and the application of policies to allocated memory.

The memkind library is built upon jemalloc – a general purpose malloc implementation. The
jemalloc and memkind libraries are open source and are available from the memkind organization
at github: https://github.com/memkind. Both memkind and jemalloc are distributed under the
two clause BSD license described in the COPYING file. In the future, these libraries may be bundled
as an Intel R© product called the “User Extensible Heap Manager.”
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2 HPC Middleware

In HPC, middleware facilitates application development by abstracting portability and performance
optimizations from the application developer. Popularly used middleware are MPI implementations
like MPICH [15], MVAPICH and Open MPI [13], portable data format libraries like NetCDF [23]
and HDF5 [12], computational libraries like BLAS [18], Intel R© Math Kernel Library and numerical
solvers like PETSc [2], Trilinos [16] and Hypre. Most of these libraries have special memory usage
requirements and some even define their own custom allocator to handle memory optimizations.
Furthermore, some middleware intercept calls to malloc/free to customize them. This can poten-
tially cause conflicts in the software stack if more than one library or the application itself attempt
this method of customization. The memkind library introduced here can easily address these issues
by providing a uniform set of interfaces that enable efficient use of the underlying memory resources
without major modifications to the middleware layers or the application.

Usage models for a feature-rich memory manager exist as a result of (1) physical memory type,
(2) virtual memory policy, and (3) virtual memory consumers (clients). Examples of (1) include
on-package memory and nonvolatile memory, which are now or will soon be integrated into systems
in addition to the standard DRAM technology (i.e. off-package memory). Page protection, size,
and pinning/migration are all examples of (2). Libraries and runtime systems fall into (3); obvious
examples include MPI and OpenSHMEM, both of which have at least one API call that allocates
memory. In this section we will discuss some important clients that we think can benefit and hope
will make use of this library.

2.1 Mathematical Frameworks

Traditionally, library-based solver frameworks such as Trilinos [16] and PETSc [2] have provided
memory allocation routines to provide guarantees to internal uses of the data for issues such as
operand alignment and interactions with distributed message passing such as MPI. Recently, the
addition of Kokkos arrays [9] to the Trilinos framework has provided compile-time transformation of
data layouts to support cross-platform code development on machines as diverse as general-purpose
GPUs, many-core-architectures such as the Intel R© Xeon Phi

TM
coprocessor and contemporary

multi-core processors such as the Intel R© Xeon R© processor family and IBM’s POWER* lines. The
addition of compile time data structure usage hints – through C++ meta-template programming
– to Kokkos Views allows for the insertion of memkind routines to explicitly allocate and manage
individual data structures (Views) as needed. This approach therefore abstracts away almost all
of the specific details relating to NUMA-awareness and multiple memory types for library and
application developers while maintaining the performance and portability desired.

2.2 MPI

MPI is a ubiquitous runtime environment for high-performance computing that presents a number
of examples where a flexible memory allocator is useful.

First, MPI provides its own allocation and deallocation calls, MPI Alloc mem() and
MPI Free mem(), which are sometimes nothing more than wrappers around malloc(3) and
free(3), but can allocate inter-process shared memory or memory backed by pages that are reg-
istered with the NIC (and thus pinned); in either case, the memory may come from a pre-existing
pool or be a new allocation. A useful feature of MPI Alloc mem() is the MPI Info argument, which
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allows a user to provide arbitrary information about the desired behavior of the call with key-value
pairs; it is natural to use this feature to enable the user to lower memkind -specific features through
the industry-standard MPI interface.

Second, inter-process one-sided communication and direct access require special allocators, e.g.
MPI Win allocate() and MPI Win allocate shared(), both of which can leverage memkind to
provide symmetric heap memory, network-registered memory or inter-process shared memory. Like
MPI Alloc mem(), these calls take an MPI Info argument, which gives the user extra control over
the behavior of their MPI program.

2.3 OpenSHMEM

OpenSHMEM is a one-sided communication API that has some of the features of MPI-3, but
warrants special consideration because of the user expectation (albeit not a requirement of the
current OpenSHMEM specification) that virtual addresses returned by shmalloc() be symmetric.
That is, that they be identical across all processing elements both within a node and across nodes.
Supporting this expectation requires an implementation to reserve a large portion of the address
space and suballocate from it.

Welch et al. describe an extension of OpenSHMEM to support memory spaces [27] that is
naturally aligned to the features of memkind. While supporting one symmetric heap is straight-
forward by modifying an existing allocator, supporting an arbitrary number of symmetric heaps
across different subsets of processes is more complicated, but the spaces API maps naturally to
memkind.

2.4 Hybrid OS Kernels

Wisniewski et al. [28] describe a hybrid operating system designed for HPC where two coupled
but largely independent operating systems are resident on the same platform. One OS is a fully
featured Linux implementation and the other is a light weight operating system running on the
CPUs designated for compute intensive operations. They give a simple solution for partitioning
the hardware address space at boot time, but leave open the question of how virtual addresses will
be shared between operating systems. The obvious solution is to handle this distinction through
virtual memory policies and memkind can be used to track these within the context of a user level
heap manager.

2.5 Intel R© Math Kernel Library

The Intel R© Math Kernel Library offers a wide range of mathematical operations. One set of
operations that is particularly interesting in the context of on package memory are the sparse
matrix computations which are often memory bandwidth bound. The APIs that the Intel R© Math
Kernel Library offers for sparse matrix solving include functions that allocate space and copy
sparse data provided by the user into layouts that are optimized for access patterns used when
computing. This functionality would be well served by the high bandwidth characteristics of on
package memory, and the memkind library can be used to locate the structures there.
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3 Related Work

To date there are many examples of software designed to deal with problems that can be generalized
to the condition of having a heterogeneous memory architecture. Some important examples of this
in the context of the Linux operating system are system calls and user libraries for enabling cache
coherent Non-Uniform Memory Access (cc-NUMA) as well as the Linux huge page functionality.
Additionally, there are the PGAS family of programming models which present the user with a
global view of memory, either through load-store (in a PGAS language, e.g. [22, 7]) or a one-sided
API (in a PGAS library, e.g. [3, 21]).

Of the new memory hardware features on the horizon, on package high bandwidth memory will
be available soonest, and as a result, there is a growing body of literature discussing software mod-
ifications for enabling a two tiered memory hierarchy. There have been attempts to address this
challenge within the operating system [20], and other discussions of user level software modifica-
tions [19]. Here we discuss user-level software which addresses not only the problem introduced by
a two-tiered memory hierarchy, but the more general problem of user selection of memory hardware
and policies applied to memory through a unified customizable allocation interface.

3.1 OS Abstractions

There have been many attempts to preserve a homogeneous memory model while using memory
hardware that is heterogeneous by enabling the operating system with an abstraction layer. Some
examples of this are the Linux Transparent Huge Page (THP) feature, or the techniques of [20]
to support on-package addressable memory. In these examples a heuristic is executed by a system
daemon which tries to opportunistically use a hardware feature when possible or to predict future
memory access patterns and shift resources to optimize performance in the case where the prediction
were true. Note that in recent Linux kernel versions the primary mode of operation for THP is
allocating huge pages at time of fault and the daemon is a secondary mechanism. In this paper we
posit that although these techniques have the advantage of preserving existing memory management
APIs and they enable some performance benefit without application modification, the proliferation
of features available in memory hardware requires a more sophisticated software interface for user-
level memory management. Additionally, in the context of high performance computing (HPC)
the general trend is to simplify and defeature the operating system to enable the full utilization of
resources by the application [24][28] rather than pushing complexity into the operating system.

3.2 User Level Software

Having explicit control of the locality of physical memory backing in a NUMA environment can have
a significant impact on application performance. Furthermore, being able to allocate memory from
specific NUMA nodes in a system becomes imperative with upcoming new memory technologies.
In [17] the authors try to make TCMalloc NUMA-aware. The issue with this solution is, the lack
of arenas in TCMalloc stops this approach from providing partitions for each kind of allocation.
Furthermore, the approach suggested is not extensible to future memory technologies and only
looks at allocating from the nearest NUMA node. There are other solutions which try to solve
NUMA awareness with heap managers. Pool allocator [25] implemented as a part of Boost [8]
provides an approach to allocate memory from an underlying pool. This method is restricted to
applications written in C++ with Boost libraries. Furthermore, the usage is complicated by the
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requirement to create a pool which ensures that allocations come from a desired NUMA node.
Macintosh OS X* uses a “scalable zone allocator” [26] to make allocations. Even this approach
requires application developers to define a zone to ensure allocation comes from the appropriate
NUMA node and it is a solution specific to Macintosh OS X. The approach suggested in this paper
provides not only a NUMA-aware heap manager, but also provides an extensible architecture which
supports partitioning of multiple memory kinds.

Two prominent Linux user libraries that define allocators which provide enhancements to the
mmap(2) system call are libnuma and libhugetlbfs. Neither of these user libraries couple the feature
they provide of simplifying the system call to map virtual address ranges with a heap management
system. The purpose of heap management is to provide a data structure that enables reuse of
virtual address ranges already reserved for the application by calls to the operating system once
they are no longer in use by the application. In this way the heap is an interface designed to avoid
making system calls.

3.3 Existing Heap Managers

There are multiple heap managers designed to improve the performance of allocators in multi-
threaded environments. Berger et al. [4] discuss the effects of characteristics such as speed, scala-
bility, false sharing avoidance and low fragmentation as the key issues which affect performance of
allocators in multi-threaded environments. Apart from [4] there are many other heap managers
designed to address these issues. Jemalloc [10] is one such heap manager which addresses these
problems with the help of multiple allocation arenas. Jemalloc uses a round-robin approach to
assign arenas to threads. This approach is suggested to be a more reliable approach compared to
hashing thread identifiers as used in other allocators like Hoard [4]. Google* TCMalloc [14] is a
heap manager designed to address the challenges associated with multi-threaded applications. It
was initially used in production environments in Facebook* , but was replaced with jemalloc [1, 11]
due to its inconsistent memory economy which is cured in jemalloc by dirty-page trimming with
the help of madvise(2).

In [5] the authors describe a customizable C++ heap management framework, heap-layers,
where the purpose of the customization is to improve allocator performance for application specific
allocation patterns [5]. A follow up article [6] shows the limited performance benefit of such an
effort when compared to a good general purpose solution. In contrast, here we describe a C solution
where the purpose of the customization is to exploit inhomogeneities in hardware and express OS
policies that apply to the memory being managed. There is also the opportunity for allocator
performance optimization through the customization interface described. By building our interface
in the C language and based on syntax borrowed from the ISO C standard, we enable use of that
interface by all languages and environments that can link to C object code, and provide an easy
transition for those application which use the ISO C allocation interfaces.

4 Design and Implementation

The jemalloc library is the default heap manager on the FreeBSD* operating system, and is also
prominently used by the Firefox* web browser, the Facebook back-end servers, and the Ruby
programming language. There are also many other uses of jemalloc as it fills an important niche;
to quote the jemalloc README:
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“jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation avoid-
ance and scalable concurrency support.”

No heap management system is perfect in all use cases, but jemalloc is quite good in many, and
especially in tackling the problems inherent in a highly threaded environment.

We chose jemalloc not only because of its performance characteristics, but also because of the
partitioning provided by its arena structure. As of version 3.5.1, the jemalloc library creates four
arena structures per CPU on the system. Each thread is assigned to an arena in a round-robin
fashion and the associated arena index is recorded in thread local storage. When a thread requests
a small allocation all locks and buffers used to service the request are local to the associated
arena. This algorithm, which is primarily designed to avoid lock contention, also provides a level of
encapsulation that ensures that buffers stored in two different arenas are not mixed. In this way we
can associate memory properties with an arena without fear that these properties will be polluted.
The jemalloc library enables the use of user-created arenas through its “non-standard interface.”
We leverage this capability to create arenas with specific memory properties, and then select an
arena with the requested properties when doing an allocation.

extent address
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* function
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  trees
* red-black
  tree
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Figure 1: Program flow for memkind malloc().
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4.1 The jemalloc Library Extension Interface

The jemalloc non-standard interface defines functions such as je mallocx() which take an addi-
tional “flags” argument. The flags enable control of alignment, zeroing and arena selection. In
this class of interfaces jemalloc also provides a je mallctl() function that can be used for intro-
spection of the library’s state and modification of library behavior. This API enables the creation
of arenas that are used exclusively when the user selects them through the flags argument of the
non-standard interface allocation routines. When a new arena is created je mallctl() returns an
arena index which selects from the internal arena array data structure. Through bit manipulation
this index is encoded in the “flags” for allocator arena selection.

We have extended the arena creation facility from having a one directional return of an arena
index, to a bi-directional exchange of indices between the jemalloc library and the memkind library.
The memkind library provides the partition index which is stored in the created arena and can be
passed to the mmap(2) wrapper function when jemalloc maps virtual addresses from the operating
system as a result of using a memkind created arena for allocations. There is a one-to-one mapping
between partition indices and kinds of memory, and by abstracting the kind of memory to an integer
value we limit the impact on the jemalloc implementation. The current implementation uses a weak
function reference to the memkind mmap(2) wrapper: memkind partition mmap(). This function
reference is only used in the case where an arena is created by memkind, and this is enforced by
tagging all other arenas with a zero partition index. In the future this may be implemented with
a callback registration in jemalloc rather than a weak symbol.

4.2 Data Structures in jemalloc

Figure 1 shows the basic control flow of a call to one of the memkind allocation interfaces with some
of the important data structures in the jemalloc library and how the memkind library interacts
with them. Here zero designates the default option for a decision. Note that je malloc() does not
call je mallocx() internally, but it does call a function with a similar call signature. The arenas,
the kind and the red-black tree nodes are all tagged with a partition index. The partition index has
the highest precedence in the comparison operator for both the extent and address tree ordering.
The arena structure has been discussed at length, and the arenas are organized in an indexable
array. Each arena has two trees associated with it: the extent tree and address tree. These are
red-black trees which are a self balancing ordered binary trees where each node describes a freed
virtual address range. These trees share nodes and each node references edges for traversing either
tree. The nodes store information about virtual address ranges that have been mapped from the
operating system and are available for servicing allocation requests. To select the best node to
service an allocation request the edges for the tree ordered by extent are used. To check if a freed
address can be coalesced with an existing extent, the edges for the tree ordered by address are used.

The arenas provide a partitioning of memory properties for small allocations, but additional
modifications are required for larger allocations. The version of jemalloc that was forked to sup-
port memkind, version 3.5.1, supports “huge” allocations (bigger than two megabytes) with an
extent/address tree that is shared by all threads and this data structure is not bound to an arena.
The memkind extension to jemalloc partitions this tree by tagging each node with a partition index
which is used by the insertion, deletion and query operators of the tree as the principle comparison
operation. Additionally the coalescing algorithm of jemalloc is modified so that virtual address
ranges tagged with different partition indices are not coalesced.
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4.3 The Plug-in Architecture

The memkind library provides its plug-in architecture by allowing the user to modify each of the
parameters for the enabled memory system calls through implementing a function to generate
them. The fundamental data structure of the memkind library is a struct of the same name
with the first element pointing to a constant vtable of function pointers called the memkind ops

structure. The functions in this structure are used to determine each of the parameters to the
mmap(2) and mbind(2) system calls. This feature could be extended to include other memory
system call parameters. This vtable provides the polymorphism required to modify the callback
made by the heap manager to map virtual address ranges. This mechanism provides a temporal
coupling of all system calls for modifying memory properties. Applications will only be forced to
call into the kernel to modify memory properties upon the exhaustion of the free memory pool
associated with that set of properties.

In cases where the partitioned jemalloc heap algorithm is insufficient the user can opt to im-
plement their own completely independent allocator by defining functions that mimic the ISO
C allocation APIs, as these functions (e.g. malloc(3) and free(3)) are also captured by the
memkind ops vtable. The only additional requirement of allocation routines which do not use the
partitioned jemalloc implementation is that they must define a function that will determine if the
associated free() implementation is capable of deallocating a given virtual address. This enables
the freeing of a pointer in a context where the provenance of the pointer is unknown.

4.4 Static and Dynamic Kinds

The memkind library defines interfaces for “static kinds” which are available without requiring
the user to define them. These are intended to be representative of requirements shared between
clients. Some examples of these are the MEMKIND HBW kind which targets high bandwidth memory
and the MEMKIND HUGETLB kind which targets the default Linux hugetlbfs. If a client has a unique
set of requirements, or their requirements were not integrated as static kinds, they have the option
to define their own “dynamic kinds” through the memkind create kind() interface. This interface
takes as input a constant vtable of the operations that define the kind. By providing an interface
that makes it easy for the client to define the combination of memory hardware and policy required,
the library need not define every possible combination in its internal static kinds.

4.5 The Decorator Interface

By unifying the interface for accessing different allocation techniques and policies we provide the
ability to apply modifications to all allocations through a high level decorator pattern. This solves
problems related to profiling, accounting, and buffer registration/de-registration in the context
of mixing unrelated allocation methods. This is done by enabling weak function references to
“pre” and “post” operations for each of the high level memkind heap management APIs. The pre
operations can modify any input to the decorated function and the post operation can modify any
output from the decorated function. This is a new feature that will be integrated with memkind
version 0.3.
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4.6 Heap Management on NUMA systems

As described earlier, a user-space heap manager is designed to enable the reuse of virtual address
ranges previously obtained from the operating system. In Linux, the physical memory backing a
virtual address range is mapped by the operating system when the memory is first written to. The
default behavior in Linux on a NUMA system is for this physical backing to come from the NUMA
node with the smallest NUMA distance from the CPU of the calling thread. While that memory
is in use on that CPU the memory will localized due to the smallest NUMA distance constraint. If
the thread frees the allocation and puts the virtual address range that has a physical backing into
the heap managers free pool, then another thread running on a different CPU may have the same
virtual address range returned by the heap manager when it makes an allocation. In this case the
physical memory will already be mapped, and it may not be localized to the CPU of the allocating
thread.

One simple solution to this problem is to have a separate free pool for each thread. This
tempting solution has a side benefit: in addition to ensuring that allocations remain localized, it
also eliminates thread contention for access to the recycle pool. The problem with this solution
is the mismatch of the required granularity: there are generally many more threads than NUMA
nodes. This implies that in the case where all of the physical pages of a NUMA node are mapped
by a process, one thread may have plenty of space in its free pool while another thread running on
the same CPU may be unable to allocate memory.

Rather than viewing thread contention for the free pool and NUMA locality as the same prob-
lem, it is better to separate them. These related problems are dealt with differently by different
heap managers, and the strategy chosen by the developers of the jemalloc heap manager has evolved
over time. The solution given by jemalloc in versions 3.5.1 and earlier is to have a thread local
free pool for smaller allocations and a shared free pool for large requests. This asymmetry was
changed in jemalloc version 3.6.0 so that even very large requests were serviced by independent
“arenas” which are localized to threads which were assigned to the same arena as a result of the
arena selection algorithm. This was changed again recently in the upstream jemalloc development
branch (not yet been tagged as a release). These changes use a radix tree to enable sharing of large
allocations between threads while also avoiding lock contention.

4.7 Determining the Amount Memory

Enabling applications to query the amount of total and free memory available for a given kind
may be critical to the logic for determining which data structures will be allocated in which kind
of memory. There are several problems with calculating the amount of free memory discussed
below. The memkind interface offers the memkind get size() API. This can be used to query the
amount of total and free memory associated with a kind. The current default implementation of
memkind get size() is a wrapper around numa node size64() and, as such, there are some issues
with this implementation. The numa node size64() API measures physical pages free within the
operating system’s pool. This implies that it does not account for the physical pages consumed
by the application heap’s free pool which can be used to service allocations without making an
operating system request. Additionally there is no accounting for virtual address ranges in use by
applications which have not yet been backed with physical pages. Note that the default behavior
of Linux is that physical page backing is populated at time of first write not time of allocation (this
behavior is configurable via the overcommit sysctl). Another issue is that the numa node size64()
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implementation parses the text in sysfs entries which means calls to memkind get size() must be
strictly outside of the critical path.

For most kinds of memory the “total” amount of memory associated with a kind could be easily
cached at time of kind object creation (with some caveats for some file backed or hot-pluggable
memory types). The free amount of memory is, of course, dynamic and must be calculated at
time of query. Approximating free memory available without making a system call would be quite
useful, but could only be relied upon under certain obtainable conditions. The time-of-query versus
time-of-use problem makes the “free” number unreliable as well.

The Linux control groups (cgroups) functionality allows a process and its children to have
a memory budget that is a fixed fraction of the total regardless of the memory used by other
unowned processes on the system. This mechanism is typical in production MPI environments,
and this brings us closer to being able to account for memory available without querying the
operating system. If we could be sure that all memory requests made by the calling process went
through the memkind APIs we could solve the accounting problem implied by the virtual/physical
mapping, but if other methods are used to obtain memory (e.g. glibc malloc(3) or direct calls
to mmap(2)) we must resort to system calls for getting the “free” value (a possible workaround is
to intercept such calls via symbol interposition, but this can have negative side-effects). Another
issue is that the memory container that cgroups provides can be consumed by operating system
buffers dedicated to the process, e.g. I/O caching, and these buffers would not be accounted for.
If, however, the kind of memory was configured in a way which disables operating system use (i.e.
it is located on NUMA nodes which are not “closest” to any CPU), then this issue is mitigated.

Even in the best case, where all allocations are made through the memkind interface and careful
use of cgroups is done, the amount of free memory is a global property shared by all threads.
Therefore, updating the free value requires some sort of locking mechanism or use of 64-bit integer
atomics.

5 Performance Evaluation

Since the memkind library is built on the jemalloc library, the latter one is a natural reference in
the context of the allocator performance. We expected the performance characteristics of memkind
library to be close to those offered by the original, unmodified version of jemalloc. In particular,
this also applies to the scalable concurrency: providing increased performance with larger numbers
of threads.

5.1 Benchmark

To evaluate the performance of the memkind library we used a synthetic multi-threaded mi-
crobenchmark, designed in the way that allows to compare the performance of various mem-
ory allocation libraries, including not only memkind and jemalloc, but also the standard (and
usually default) libc implementation. For each library, benchmark generates the identical
workload, simply substituting the malloc(3)/free(3) calls with je malloc()/je free() or
memkind malloc()/memkind free() calls respectively. In case of memkind library, test were ex-
ecuted on a dynamically created kind using jemalloc arenas. This way, we could evaluate the
overhead introduced by the memkind library.

Each test run consisted of the following three phases: (1) malloc: allocation of given number
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of blocks, (2) mixed : freeing of a randomly chosen buffer and allocation of a new buffer (repeated
a given number of times), (3) free: release of all the allocated buffers. All the tests were run
with increasing number of threads [1-32], and performance results were collected separately for
each phase. The configured number of operations was evenly distributed among the threads. Due
to the differences in handling the small and huge allocation requests in jemalloc, performance
tests were run independently for various allocation size classes - small, large and huge, both for
fixed allocation size (128B, 8KB and 2MB), as well as for randomized size (within a given range):
[32B-512B] and [1KB-2MB]. Depending on the configured allocation sizes, there were 104 − 107

operations (malloc()/free()) performed in each run. The most interesting is the performance
in the second (mixed) phase, as this allows observing the benefits provided by the features like
arena-based allocation algorithm and the thread-specific cache.

5.2 Environment

We ran the performance tests on a dual socket system equipped with two Intel R© Xeon R© processor
E5 family @2.60GHz (20MB of L3 cache and 8 physical cores per socket), and with 128GB of DDR3
SDRAM @1600MHz. The system was running CentOS* Linux 7.0 with kernel version 3.18.0. In
order to avoid NUMA effects influencing the performance measurements, the benchmark process
was bound to run on a single socket only (8 CPUs) using the numactl utility.

5.3 Initial Tests and Performance Tuning

The first measurements show that the performance of memkind library was, depending on the
scenario, up to 10 times worse than the vanilla jemalloc build. It appeared that the main reason
for that was an algorithm of mapping arenas to threads. The initial implementation was using
sched getcpu(3) call to provide per-CPU arena association. In practice, however, the cost of
reading the CPU number in each call to memkind malloc() makes this solution extremely sub-
optimal. For this reason, the original implementation was replaced with a solution similar to the
mechanism used in jemalloc. As described in section 4, each thread is assigned an arena at the
time it does its first allocation. Once the arena is selected, the arena index is stored in the thread
local storage (TLS). Subsequent calls to malloc/free simply obtain the arena index from the TLS.

Introducing the new arena selection algorithm improved performance twice, but the results
were still 2-5 times lower than for jemalloc. Further investigation showed that the performance gap
was related to some limitations of non-standard jemalloc API. First, the extended functionality of
je mallocx() introduces some minimal overhead (approx. 15%), but the primary reason of the
lower performance was the fact that the thread-specific cache (aka tcache) is by design not used
in case of extended arenas. To fix this problem, the prototype thread cache support for extended
arenas was implemented in jemalloc, providing the significant performance boost for small and large
allocations (Figure 2).
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Figure 2: Comparison between memkind using jemalloc with enabled and disabled thread-cache
support for extended arenas. (Mixed malloc/free scenario, allocation size - 8KB).

5.4 Results

Eventually, with the modifications described above, the average memkind performance is close to
jemalloc, with the remark that the situation is slightly different for small and huge allocations.
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Figure 3: Performance of jemalloc and memkind for randomized allocations size [32B-512B].

For huge allocations, the performance of memkind is almost identical to jemalloc. On this path,
the performance is limited mainly by the lock contention on two global mutexes, which protect
a tree of extant huge allocations and a tree of recyclable chunks. Thread cache support and the
arena selection algorithm have no impact on the performance, as those mechanisms are not used on
huge allocation path (as for jemalloc 3.5.1). For small and large allocations [32B-8KB] benchmark
results for memkind are still lower than for jemalloc. In mixed scenario (phase 2), the gap is
about 15% (Figure 3), and because of the thread cache usage, the decline in performance is related
mostly to the overhead introduced by je mallocx() or the memkind itself. However, for malloc
scenario (phase 1), the average performance drop is higher (about 20-35%), which may be related to
the additional memkind partition mmap() callback, used to create a memory mapping with some
kind-specific flags or NUMA memory policy.

6 Conclusions

We have described a memory management interface that enables a range of new memory tech-
nologies which are coming to market and solves the existing problem of tracking memory policies
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within the memory management framework. The presented solution is implemented entirely in
user space. However, the interface exposes the array of features available through Linux system
calls to a higher level in the software stack. We have designed an implementation that limits the
total number of required system calls and thus improves the overall performance when compared
to a solution without buffer reuse. By effectively segregating the reused buffers the solution enables
client specific requirements to remain isolated. Through the decorator interface we enable track-
ing, accounting and profiling of allocations made by all clients. The high performance computing
community relies heavily on middleware solutions to simplify scientific applications. It is our hope
that these middleware solutions will adopt the memkind interface for memory allocation which will
enable user applications to effectively use new memory technologies and advanced policies without
modifying the application software nor the operating system.
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1997.

[3] R. Barriuso and A. Knies. SHMEM user’s guide for C. Technical report, Technical report,
Cray Research Inc, 1994.

[4] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. SIGPLAN Not., 35(11):117–128, Nov. 2000.

[5] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing high-performance memory alloca-
tors. SIGPLAN Not., 36(5):114–124, May 2001.

[6] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom memory allocation.
SIGPLAN Not., 37(11):1–12, Nov. 2002.

[7] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction
to UPC and language specification. Center for Computing Sciences, Institute for Defense
Analyses, 1999.

15



[8] B. Dawes, D. Abrahams, and R. Rivera. Boost c++ libraries. URL http://www. boost. org,
35:36, 2009.

[9] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling Manycore Performance
Portability through Polymorphic Memory Access Patterns. Journal of Parallel and Distributed
Computing, 74(12):3202 – 3216, 2014.

[10] J. Evans. A scalable concurrent malloc(3) implementation for freebsd, 2006.

[11] J. Evans. Scalable memory allocation using jemalloc, 2011.

[12] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An overview of the hdf5 technol-
ogy suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pages 36–47. ACM, 2011.

[13] E. Gabriel et al. Open mpi: Goals, concept, and design of a next generation mpi implemen-
tation. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
97–104. Springer, 2004.

[14] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc. goog-perftools. sourceforge.
net/doc/tcmalloc. html, 2009.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the mpi message passing interface standard. Parallel computing, 22(6):789–828, 1996.

[16] M. A. Heroux et al. An overview of the trilinos project. ACM Trans. Math. Softw., 31(3):397–
423, 2005.

[17] P. Kaminski. Numa aware heap memory manager. AMD Developer Central, 2009.

[18] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms
for fortran usage. ACM Transactions on Mathematical Software (TOMS), 5(3):308–323, 1979.

[19] M. R. Meswani et al. Toward efficient programmer-managed two-level memory hierarchies in
exascale computers. In Proceedings of the 1st International Workshop on Hardware-Software
Co-Design for High Performance Computing, Co-HPC ’14, pages 9–16, Piscataway, NJ, USA,
2014. IEEE Press.

[20] M. R. Meswani et al. Heterogeneous memory architectures: A hw/sw approach for mixing
die-stacked and off-package memories. In Proceedings of the International Symposium on High
Performance Computer Architecture, 2015.

[21] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A portable “shared-memory”
programming model for distributed memory computers. In Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing, Supercomputing ’94, pages 340–349, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[22] R. W. Numrich and J. Reid. Co-array fortran for parallel programming. SIGPLAN Fortran
Forum, 17(2):1–31, Aug. 1998.

16



[23] R. Rew and G. Davis. Netcdf: an interface for scientific data access. Computer Graphics and
Applications, IEEE, 10(4):76–82, 1990.

[24] R. Riesen et al. Designing and implementing lightweight kernels for capability computing.
Concurr. Comput. : Pract. Exper., 21(6):793–817, Apr. 2009.
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